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ABSTRACT
Censorship-circumvention systems are designed to help users by-
pass Internet censorship. As more sophisticated deep-packet-
inspection (DPI) mechanisms have been deployed by censors to de-
tect circumvention tools, activists and researchers have responded
by developing network protocol obfuscation tools. These have
proved to be effective in practice against existing DPI and are now
distributed with systems such as Tor.

In this work, we provide the first in-depth investigation of the
detectability of in-use protocol obfuscators by DPI. We build a
framework for evaluation that uses real network traffic captures to
evaluate detectability, based on metrics such as the false-positive
rate against background (i.e., non obfuscated) traffic. We first
exercise our framework to show that some previously proposed
attacks from the literature are not as effective as a censor might
like. We go on to develop new attacks against five obfuscation
tools as they are configured in Tor, including: two variants of
obfsproxy, FTE, and two variants of meek. We conclude by using
our framework to show that all of these obfuscation mechanisms
could be reliably detected by a determined censor with sufficiently
low false-positive rates for use in many censorship settings.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection

Keywords
Censorship-resistance; network obfuscation; Tor

1. INTRODUCTION
Nation-states and other Internet censors use deep-packet inspec-

tion (DPI) to detect and block use of circumvention tools. They do
so by recognizing the tools’ protocol headers or other telltale finger-
prints contained in application-layer content of network packets. In
response, researchers and activists have proposed a large number of
approaches for obfuscating the network protocol being used. These
obfuscation tools can be loosely categorized as either attempting to
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randomize all bytes sent on the wire [39, 40, 48, 52], attempting to
look like (or mimic) an unblocked protocol such as HTTP [12, 26,
45,46], or tunneling traffic over an implementation of an unblocked
protocol [42]. Examples of network obfuscators from each of these
three classes are now deployed as Tor pluggable transports [3] and
with other anti-censorship tools [44, 48]. Currently, the available
evidence indicates that existing DPI systems are easily subverted
by these tools [12], and that nation-state censors are not currently
blocking their use via DPI [43]. Thus these systems provide
significant value against today’s censors.

Can censors easily adapt and deploy new DPI algorithms that
accurately detect these protocol obfuscators? Houmansadr et
al. [16] proposed a number of attacks for detection of mimicry
obfuscators, but they do not measure false-positive rates. It may
be that their attacks are undeployable in practical settings, due to
labeling too many “legitimate” connections as emanating from an
anti-censorship tool. What’s more, the randomizing and tunneling
obfuscators, which are the most widely used at present [43],
have not been evaluated for detectability at all. (Despite folklore
concerns about possible approaches [42].) In short, no one knows
whether these obfuscators will work against tomorrow’s censors.

In this work, we provide the first in-depth, empirical investiga-
tion of the detectability of modern network protocol obfuscators,
and of the collateral damage to real network traffic due to false
positives. Our results suggest that all of the in-use protocol
obfuscation mechanisms can be reliably detected by methods
that require surprisingly little in the way of payload parsing
or DPI state. See Figure 1 for a summary of our best-performing
attacks against Tor’s pluggable transport obfuscators.

To obtain these results, we built a trace analysis framework and
exercised it with a variety of datasets. Prior attack evaluations [12,
16] have focused primarily on small, synthetic datasets generated
by a researcher running a target tool in a specific environment, and
evaluating true-positive and false-negative rates of a certain attack.
As mentioned above, this may lead to over-estimation of tool
efficacy in practice: actual false-positive rates may be prohibitively
large, and the synthetic traces used in the lab evaluations may be
unlike the network traces seen in real environments. We address
both of these issues by employing an experimental methodology
that more closely reflects the setting of nation-state level DPI.

We collected nearly a terabyte of packet traces from routers
associated to various networks at our university campus. Together
these have about 14 million TCP flows. Given the size of the
covered networks (five /16 networks and three /24 networks), this
represents a large, diverse dataset suitable for assessing false posi-
tives. We supplement with researcher-driven traces of obfuscation
tools (which do not appear in the traces already), collected across a
number of client environments.



Obfuscator Type Attack TPR FPR
obfsproxy3 Randomizer entropy + length 1.0 0.002
obfsproxy4 Randomizer entropy + length 1.0 0.002
FTE Mimicry URI entropy/length 1.0 0.00003
meek-amazon Tunneling decision tree 0.98 0.0002
meek-google Tunneling decision tree 0.98 0.00006

Figure 1: Summary of best-found attacks against the network
obfuscators deployed as Tor pluggable transports. TPR is the true-
positive rate; FPR is the false-positive rate as measured using real
network traces from a university campus.

Using these datasets, we explore previously proposed DPI-based
attacks against obfuscation systems and develop new ones. To
begin, we evaluate a collection of semantics-based attacks, which
attempt to detect a mimicry obfuscator by looking for deviations
from expected behavior of the cover protocol. This type of attack
was recently introduced by Housmansadr et al. [16]. Next, we
explore entropy-based attacks, which seek to detect when network
packet contents (in whole, or in part) appear to be encrypted.
encryption may be in whole, or in specific parts where non-
obfuscated flows would not be. Finally, we examine machine-
learning-based attacks. These use decision trees that are trained
from traces of both obfuscated and non-obfuscated traffic. Some
of the features used were inspired by suggestions by the meek
designers [42], but we are the first to build full attacks and evaluate
them. Our investigations reveal that:

• Semantics-based attacks can sometimes have prohibitive false-
positive rates (up to 37% in the case discussed in §4.1). False
positives here arise because many non-censorship tools devi-
ate from standards in ways similar to mimicry protocols. In
these cases they are unlikely to be useful by censors. We also
show that other semantics attacks, including one suggested
in [16], have relatively low false-positive rates (0.03% as in
§4.2).

• Randomizers such as obfsproxy [40], which only emit ran-
dom payload bytes, are reliably detected by a combination of
entropy-based tests and simple heuristics (e.g. length checks).
In particular, these tests are applied only to the beginning of
the first packet payload. This attack abuses the distinction
between conventional protocols’ plaintext headers and the
lack of same in randomizing obfuscators. In short, having
“no fingerprint” is itself a fingerprint (§5.1).

• Format-transforming encryption (FTE), as currently deployed
in Tor, is reliably detected by simple tests on the entropy
and length of the URI appearing in the first FTE-produced
packet (§5.2).

• Tunneling protocols such as meek [42], broadly considered
the most secure current proposal for protocol obfuscation,
are reliably detected by classifiers trained on traffic-analysis
and entropy features (§6). The trained classifiers are simple
decision trees, and do require the DPI to maintain state for the
first part of a flow.

In summary, our analyses show how to reliably detect all of the
currently deployed Tor pluggable transports. For example, our
testing reveals that we can detect 100% of obfsproxy3/obfsproxy4
traces using just the first packet in the flow, and with false-positive
rate of 0.2%.

A false-positive rate of 0.2% is likely to still be considered
prohibitively high for some censors. In particular, since the base-
rate of obfuscator-produced traffic is dominated by that of non-
obfuscated traffic, the vast majority of flows that are tagged as
obfuscated will in fact be false positives. In the near term,

false positive rates could be improved via white-listing of specific
protocols. In addition, more robust and expensive tests on tagged
traffic such as the active probing techniques used by the Great
Firewall [51] could be used to achieve a false positive rate of
essentially zero. Using our network trace data sets, we give a
preliminary analysis of the expected burden such secondary checks
would impose on a censor’s infrastructure (§6.2). Nevertheless,
evidencing negligible false positive rates in realistic deployment
settings remains an important challenge for future work.

Summary and discussion. We are the first to provide an in-depth
analysis of attacks against modern network protocol obfuscation.
We quantify, for the first time, the false-positive rates of previously
proposed attacks, as well as ones that we introduce. To do so we
use real network traffic like what censors would see in practice.
The framework for this analysis, while built mostly off existing
open-source tools (e.g., Bro, MySQL, etc.) required significant
engineering effort to handle the scale of our analyses. We will open
source and make public the framework for other researchers to use.
The university network captures cannot be released.

Our results suggest that censors can easily adapt their current
tools to efficiently detect state-of-the-art network obfuscators. New
obfuscators could, in turn, easily defeat the specific tests that we
propose. Under current knowledge, whichever of the censor or
protocol obfuscator can adapt to the other will have the upper
hand in protocol (mis)classification. Developing practical, network
obfuscation mechanisms that are robust to adaptation by the DPI
remains a compelling open problem of practical import.

2. BACKGROUND
Censorship. Nation-states and other organizations assert control
over Internet communications by blocking connections to websites
based on IP address, application-layer content of packets, active
probing of remote servers, or some combination of the preceding.
For a more fine-grained taxonomy of attacks see [16].

IP filtering is a commonly-used censorship technique. Here
the censors monitor a list of IPs and block all communications
whose source or destination IP that belongs to the list. IP filtering
can be deployed in border ASes or local ISPs by nation-states
censors [53]. To bypass IP filtering, a simple method is to use
anonymous proxies. By deploying proxies outside the censored
network, users within the censored network can submit traffic
past censors to the (unfiltered) proxy IP. Various proxy-based
censorship circumvention systems have been developed such as
freegate, Ultrasurf and JonDo. Tor [11], an onion routing system,
helps circumvent IP-based filtering due to its use of a large number
of proxies (and bridges). A more recent proposal is to use domain
fronting, in which one sends traffic through an unwitting reverse
proxy [42].

In addition to filtering by IPs, and partly because of the bur-
den of maintaining an exhaustive and accurate list of proxy IP
addresses, censors have increasingly also deployed deep packet
inspection (DPI) techniques. This enables censors to attempt
protocol identification: inspecting the application-layer content of
packets (e.g., application-layer headers) as well as packet size or
timing information, in order to classify the traffic as generated by
communication protocols associated with an anti-censorship tool.
In the past, Tor traffic itself contained unique application-layer
fingerprints patterns that can be recognized by DPIs [51]. In this
work we focus primarily on DPI-based censorship.

A final class of protocol identification attacks uses active probing
of a remote server. The Great Firewall of China, for example, is
known to attempt Tor handshakes with destination IP addresses



should a DPI test flag a flow to that IP as possibly emanating from
a Tor client [51]. We will consider an active attack briefly in §4.2,
and also in consideration of filtering out a (passive) DPI test’s false
positives (§6.2).

Network protocol obfuscation. In response censors’ efforts to
carry out protocol identification, researchers have developed a
number of approaches to protocol obfuscation. In large part, the
goals have been to force DPI to misidentify flows of a censored
protocol as those of a protocol that is not blocked, or to prevent
DPI from recognizing the flows’ protocol at all. The latter helps
in the case that censors do not block unidentified flows. Suggested
obfuscation techniques roughly fall into three categories:

• Randomizers: A randomizing obfuscator aims to hide all
application-layer static fingerprints, usually by post-processing
traffic with an obfuscation step that emits only bits that are
indistinguishable from random ones. Examples are Dust [48],
ScrambleSuit [52], and the various versions of obfsproxy [40,
54]. The last are currently deployed with Tor.

• Protocol mimicry: A mimicry obfuscator attempts to produce
traffic that looks to DPI as if it were generated by some
“benign” protocol, also called the cover protocol. One
example of light-weight mimicry is format-transforming en-
cryption (FTE) [12, 24], now deployed with Tor and imple-
mented elsewhere [44]. It encrypts messages to produce
ciphertexts that match regular expressions commonly used
by DPI for identifying protocols. Less efficient obfuscators
like Stegotorus [46], SkypeMorph [26], CensorSpoofer [45]
and Marionette [13] use heavier steganographic techniques to
produce messages that look like a cover protocol. Marionette
also provides mechanisms to mimic higher-level protocol
behaviors, to perform traffic shaping, and to protect against
some forms of active attacks.

• Tunneling: A logical extreme of mimicry is to simply tunnel
data over a (typically encrypted) cover protocol. Intuitively
this should provide best-possible mimicry as one is, in fact,
using an existing implementation of the cover protocol. An
example now deployed with Tor is meek, which uses domain
fronting and tunnels traffic over HTTPS connections to popu-
lar cloud load balancers such as Google (we will refer to this
as meekG) and Amazon (meekA).

As mentioned, several of these are now in-use with Tor as pluggable
transports (PTs). A PT is just Tor’s terminology for an obfuscator
that works in their framework to obfuscate the traffic between Tor
clients and bridges [3].

Available evidence indicates that the currently deployed obfus-
cators are able to circumvent deployed DPI systems [12, 43]. The
main question we address is: Can censors easily adapt their DPI
to detect and block obfuscators, without also blocking a significant
fraction of non-obfuscator traffic?

Unobservability. Houmansadr et al. [16] suggest that protocol-
mimicry obfuscators will not foil future censors because they do
not provide (what they refer to as) complete unobservability. They
informally define the latter to be achieved only when a mimicry
obfuscator faithfully follows the standards of the target protocol,
in addition to imitating all aspects of common implementations.
They give a number of DPI-based detection techniques for mimicry
obfuscators and show that these have few false negatives (missed
obfuscated flows) and high true positives (correctly identified
obfuscated flows) using synthetic traffic generated by the re-
searchers. Their attacks target semantic mismatches between
obfuscated traffic and the cover protocol, for example checking for

valid application-level headers for files, that header values such as
length fields are correct, etc.

These semantics-based attacks have not, however, been assessed
in terms of false positives: a flow that is labeled as having
been obfuscated but was actually not generated by the targeted
anti-censorship tool. A high false-positive rate could make such
attacks less useful in practice, since it may lead to blocking too
many “legitimate” connections or overwhelm systems performing
additional checks after the DPI first labels a flow as obfuscated,
as in the case of the Great Firewall’s secondary active probing
mentioned above. In fact, as we mentioned earlier, there are
realistic settings in which a false-positive rate that seems small (e.g.
0.2%) may be troublesome for censors.

Thus a question left open by this prior work is: Do the semantics-
based attacks proposed in [16] have prohibitively high false-
positive rates? Clearly a negative answer would help us answer
our main question above, but, as we will see, some semantics-based
attacks do not work as well as a censor might like.

Threat model, scope, and approach. In the rest of this paper,
we focus on answering the two questions just posed. We will
adopt the viewpoint of a censor, and attempt to build efficient
algorithms that reliably and accurately detect network flows that
have been produced by obfuscators. Our primary consideration
will be for obfuscators deployed as Tor pluggable transports, since
these are in wide use. These are: obfsproxy3 and its successor
obfsproxy4, the Tor pluggable transport version of FTE, meek
using Google AppEngine proxies (called meekG), and meek using
Amazon CloudFront proxies (called meekA).

A handful of other obfuscators will be considered, although less
deeply, in order to address the open question from [16]. For ex-
ample, we will investigate false-positive rates for the Houmansadr
et al. detection attacks for Stegotorus, even though Stegotorus
currently is unsupported and unusable with Tor. We are aware that
we evaluate only a very small fraction of proposed attacks for other
obfuscators, and we would like to investigate more attacks in the
future. However, the few attacks we considered give useful insights
into developing efficient attacks.

Our study is restricted to the efficacy of existing obfuscators.
As such, we assume that the IP address, port number, and traffic
features that existing obfuscators do not attempt to hide are out
of scope. Network-visible information that one or more existing
obfuscators do attempt to hide, including application layer content,
packet timing, and packet lengths may be leveraged in attacks.

3. ANALYSIS FRAMEWORK AND DATA
We implement a framework for empirical analysis of obfuscator

detection techniques. It will leverage two groups of datasets: the
first is a collection of network packet traces collected at various
locations at our university at different points in time, and the second
is synthetic traffic generated by target obfuscators.

We use our packet traces to examine false positives in existing
proposals for attacking censorship circumvention systems, as well
as in the new attacks we propose in this paper. We use the synthetic
packet traces to study true-positive rates of the new attacks.

We start by providing details of the two sets of data and then
discuss the analysis framework.

3.1 Datasets
We use two major types of datasets: (1) packet-level traffic

traces collected at various locations in a campus network, and (2)
packet-level traces for Tor Pluggable Transport traffic collected in
controlled environments.



OfficeDataset CloudDataset WifiDataset
Collection year 2014 2012 2010
Deployed PTs Obfs3/FTE/meek - -

Size (GB) 389 239 446
Total flow No. (M) 1.89 9.34 13.17
TCP flow No. (M) 1.22 7.48 5.32

TCP-HTTP (%) 37.0 73.6 76.6
TCP-SSL/TLS (%) 45.3 5.4 12.9

TCP-other (%) 0.2 0.2 0.1
TCP-unknown (%) 17.5 20.8 10.4

Table 2: A summary of campus network datasets and breakdowns
of TCP flows by services. “TCP-other” are flows with non-
HTTP/SSL/TLS protocols. “TCP-unknown” are flows of which
protocols are failed to identified by Bro. “Deployed PTs” shows
the Tor pluggable transports that had been deployed by the time we
collected the traces.

Campus network traces. Over a period of 43 hours between
Sep. 6, 2014 to Sep. 8, 2014, we monitored all packets entering
or leaving a /24 IPv4 prefix and a /64 IPv6 prefix belonging to our
university. In all, this resulted in 389 GB of network traffic with
full packet payloads. The networks correspond to two different
academic departments within our campus. We call this dataset
OfficeDataset.

In addition, we employed two other campus network traces,
which we call CloudDataset and WifiDataset. These were collected
at earlier points in time. In particular, CloudDataset was collected
between June 26, 2013 and to June 27, 2013 (over a period of
24 hours), and contains all traffic recorded between our entire
campus network and the public IP address ranges published by
EC2 and Azure. The dataset WifiDataset constitutes all packets
captured over a period of 12 contiguous hours in April 2010 from
roughly 1,920 WiFi access points belonging to our campus. It
contains data exchanged between all wireless clients (e.g., laptops
and smartphones) connected to the campus wireless networks and
other (internal or external) networks. A summary of these three
datasets is shown in Table 2.

The most recent trace could, hypothetically, contain flows cor-
responding to actual use of Tor with the obfuscators turned on. In
our analyses, we ignore this possibility and assume that all traffic is
non-obfuscated. Given that these flows are only used to assess false
positives (FPs), our assumption is conservative when we argue the
FP rates are low.

These traces contain potentially sensitive information of network
users. We obtained an IRB exemption for these analyses. We
performed analysis on an isolated cluster with no connectivity to
the Internet, and with suitable access controls so that only approved
members of the research team were able to use the systems. Only
the bare minimum of research team members were approved to
access the machines.

Tor traces. A Tor traffic trace captures the network traffic
exchanged when a client visits a website over Tor configured to use
a specific obfuscator. To collect a trace, we follow the procedures
for collecting traces for website fingerprint attacks as described
in [19]. We built a framework to automate these procedures.
Our framework uses the Stem Python controller library for Tor,
and the Selenium plugin for automating control over a Firefox
Browser when visiting websites [37, 41].1 We record all traffic
using tcpdump (or WinDump on Windows) at the same time.
1Also, our Firefox browser uses the exact same profiles as the
default browser in the Tor Browser bundle (TBB) 4.06. The
versions of obfuscators and Tor we used are also the same as those
being used in TBB 4.06.

Before and after visiting a website, our framework visits the
“about:blank” webpage and dwells there for 5–15 seconds. The
first time this is done is to ensure that the obfuscator connection
is fully built; in our experiments, we found that most obfuscators
forced a few seconds (usually less than 5 seconds) delay when
building connections after Tor starts successfully. The second visit
to “about:blank” is for making sure we can capture any lingering
packets.

We collected three sets of Tor traces under different com-
binations of network links (with different capacities), end-host
hardware, and operating systems, and labeled them as TorA, TorB
and TorC. We collected TorA and TorB on Ubuntu 12.04 (32-bit)
virtual machines (VMs) and TorC on a Windows 7 (32-bit) virtual
machine. The Ubuntu VMs are built on the same image. All VMs
run on VirtualBox 4.3.26 and are configured with 4G RAM and 2
virtual processors. The VMs for TorA run on a workstation and are
connected to a campus wired network, whereas the VMs for TorB
and TorC are run on a laptop and connect to a home wired network,

Each of these three datasets contains 30,000 traces collected as
follows: (1) For each target obfuscator, we used our trace collection
framework to visit Alexa Top 5,000 websites to collect 5,000 traces
(labeled as obfs3, obfs4, fte, meekG, and meekA, corresponding
to obfsproxy3, obfsproxy4, FTE, meek-google, and meek-amazon
respectively); (2) In addition, we visited the same set of websites
without Tor and obfuscators to collect 5,000 traces and labeled
them as nonTor.

A handshake message of a flow is the application-layer con-
tent of the first client-to-server packet in the flow. We extract
5,000 handshake messages from each of obsproxy3, obfsproxy4,
SSL/TLS, HTTP, and SSH flows to construct a new dataset. The
first two types of flows are sampled randomly from Tor datasets
and the other types of flows are from unused campus network
traces (recall that we only use a part of the collected campus
network traces to construct the campus datasets). We call this
dataset HandShakeDataset and use it when examining attacks
based (only) on handshake messages.

3.2 Trace Analysis
We use Bro 2.3.2 [31] with the “-r” option to analyze the

collected network traces, and format and store the results into
MySQL tables. Each table corresponds to a “.log” file generated
by Bro, and it stores the information for flows of a given type
(UDP, HTTP, SSL, etc.). Each flow is assigned an unique flow
ID, which is also generated by Bro. Also, for each trace packet,
we compute an MD5 hash to generate a packet ID, and store
the packet ID, the flow ID of the associated flow, the raw packet
content (in hexadecimal) and the packet timestamp into an Apache
Hive database [38]. The usage of Hive facilitates the management
and processing of terabytes of data. Users only need to query
the MySQL database to get the basic statistics of a trace, while
using Hive for more time-consuming, sophisticated analysis such
as analyzing packet payloads.

We develop a set of APIs to analyze the above data. These
APIs are encapsulations of Hive or MySQL queries. For some
simple analyses (e.g, counting the packets with a given keyword
in the payload), pure Hive queries are enough. To facilitate more
complex analysis and provide more flexibility, we leverage User-
Defined Functions (UDFs) in Hive to allow users to provide their
own mapper/reducer scripts [2]. We plan to release all our scripts
publicly for other researchers or activists to use.



Standard Malformed Partial Other Total
OfficeDataset 26 (89.7) 0 3 (10.3) 0 29
CloudDataset 4,293 (62.8) 1,313 (19.2) 338 (4.9) 895 (13.1) 6,839
WifiDataset 1,860 (46.7) 1,252 (31.5) 572 (14.4) 295 (7.4) 3,979

Total 6,182 (57.0) 2,565 (23.6) 913 (8.4) 1,190 (11.0) 10,847
Table 3: Breakdown of PDFs by their categories. The percentages
of all PDFs found are shown in parentheses.

4. SEMANTICS-BASED ATTACKS
We seek to determine whether in-use obfuscators can be reliably

detected by censors. The starting point is previously proposed
attacks. As described in §2, Houmansadr et al. suggest a variety
of attacks against mimicry obfuscators. For example, a Stegotorus
client may generate invalid PDF documents, whereas legitimate
traffic presumably does not. Their attacks therefore use the
deviations of a target system from expected behavior as evidence
for detecting mimicry obfuscators. We call these attacks semantics-
based attacks.

In this section, we evaluate three semantics based attacks,
two proposed by Houmansadr et al. against Stegotorus and one
suggested by Dyer et al. [12] for detecting FTE. None of these
attacks have been evaluated in terms of false positives, and the latter
has not received any analysis at all. Looking ahead, we find that the
first attack is unlikely to work well in practice due to the high false-
positive rates we discover. The other two work better, but have
deficiencies that our later attacks avoid.

4.1 Stegotorus PDF attack
Description. The Stegotorus HTTP obfuscator attempts to hide Tor
traffic in commonly-seen documents, such as PDF and JavaScript.
However, StegoTorus-HTTP does not guarantee the semantic cor-
rectness of the generated file. The authors in [16] proposed an
attack that can detect files (more specifically, PDF files) generated
by StegoTorus at a low cost and line speed. The key idea is to check
the validness of the xref table in a PDF file.

Clearly the efficacy of this attack relies on the assumption that
PDFs generated by non-obfuscated traffic, e.g., normal HTTP,
indeed has valid xref tables. This was not evaluated in [16],
presumably due to a lack of access to real traffic.

For an HTTP flow, we use a Python library pyndis to reassemble
HTTP sessions. If the Content-Type in the response of a session is
“application/pdf”, we assume the response body is a PDF file. We
extract the content from the response, store the content as a PDF
file, and use the PyPDF2 library to test the semantic correctness of
the file. We define four categories of PDFs:

• Standard: According to [17], a standard PDF file should
start with “%PDF” and end with “%%EOF”, and have a xref
keyword in the content. The PDFs in this category have these
keywords and also pass the PyPDF2 semantic check.

• Malformed: The PDFs have “%PDF”, “%%EOF” or xref
keywords (at least one keyword), but do not pass the PyPDF2
semantic check.

• Partial: A request may have a Range field that specifies the
parts of a PDF file the client wants (e.g., only request the first
200 bytes of a file). The PDFs carried by the HTTP response
of which status code is “206 Partial Content” is “partial PDF”.
The PDFs in this category will not pass the semantic check
because they are only parts of the original PDFs.

• Other: All PDFs that are not in the aforementioned three
categories. The PDFs in this category do not pass the
semantic check.

Request None 200 3xx 4xx 5xx Other
GET long 3 12 < 1 83 2 0

GET non-existing 2 18 < 1 79 1 < 1
HEAD existing 2 95 < 1 2 1 < 1

OPTIONS common 3 82 < 1 13 2 < 1
DELETE existing 3 72 < 1 21 4 < 1

TEST method 4 66 < 1 19 10 < 1
GET wrong protocol 24 10 33 28 5 < 1

Table 4: Percentage of Alexa top 10 K servers that return a
given type of response for each type of request (rounded to the
nearest whole percent). The bolded entries indicate the standard
response(s) for a given request type.

We find in our tests these four categories are mutually exclusive.
Only the PDFs in Standard can pass the PyPDF2 semantic check,
and the PDFs in other categories could not pass the test for different
reasons.

Results. We performed the test described above on the Office-
Dataset, CloudDataset and WifiDataset university capture datasets.
As shown in Table 3, the false-positive rate can be as high as 43%
across all the datasets, should the censor mark any non-standard
PDF flow as Stegotorus, as per the suggestion in [16]. More
restrictive checks would still have high false-positive rates.

To explain these results, we observe that there are many reasons
that non-obfuscator PDFs fall into Malformed or Other category.
For instance, the file is encoded or encrypted, or there are bugs in
the PDF generation software [21]. Partial content is also widely
used by browsers and applications. As an example usage, FireFox
will build several connections to fetch different parts of a single
resource with range request in parallel, and reconstruct the resource
by itself. The PDF content in each connection is incomplete,
so a censor could not directly do semantics checks. A similar
technique is called Byte Serving [22]. An application can retrieve
the necessary portion of a file instead of the entire file. For example,
a byte-serving-enabled PDF viewer can request and load a large
PDF file from a file server page by page (“page on demand”). If a
user only reads a few pages, the censorship system will never see
the whole file.

4.2 HTTP response fingerprinting attack
Description. In [16], the authors suggest that a censor can
fingerprint a StegoTorus server by observing the server’s reactions
to different types of HTTP requests, since the StegoTorus server
would respond differently from a genuine HTTP server. Of course
HTTP servers in practice may have various implementations and
it’s possible that the HTTP servers used by real websites have the
same HTTP-response-based fingerprint as the StegoTorus server.
This would lead to false positives.

We reverse-engineered httprecon, the tool used for fingerprinting
HTTP servers in [16]. We wrote our own version, a Python script
that sends the same set of requests. One exception to this is that
we omitted a particular request that is often viewed as an attack
by server operators, as we used the scanner with public servers
and therefore could only send non-malicious requests.2 We used
our implementation to scan each of the Alexa top 10 K domains
to quantify false-positive rates. For each target server, we stored
its response header for each request into a MySQL database for
analysis. We removed the servers that fail to respond to the GET
existing request or respond with non-200 code, which may indicate
the corresponding websites are down, and got 9,320 servers.

2This was not an issue in [16] as they did not apply their scanner to
public servers.



Results. Table 4 shows the percentages of servers that return a
given type of response for each type of request. The responses
are put into six categories, with boldface indicating the standard
response (as described in [16]) for a given type of request. Since
GET existing requests always receive a “200 OK” for the servers
examined, we remove the corresponding row from the table. We
can see that for some types of requests, a majority but not all of the
target servers return standard responses. Only 73 servers (0.8%)
respond like a “standard” server.

Examining the response headers more closely, we observe that
the target servers do not follow standards in various aspects (other
than the response code):

• For a GET existing request, a server should set the Connection
field in the response to keep-alive. We find of the response
headers of all the servers, 1,547 (17%) don’t have the Con-
nection field, 6,503 (71%) are keep-alive and 1,126 (12%) are
Close.

• For a TEST method request, a server should set Connection
field to Close. However, we find 1,408 (15%) responses have
no Connection field, 5,572 (61%) are keep-alive, 1,823 (20%)
are Close, and 378 (4%) fail to respond.

• For an OPTIONS common request, a standard server should
set the supported HTTP methods in the Allow line. We
find 8,026 (87%) the responses don’t have this field, only
844 (9%) return the standard supported methods (as defined in
RFC), 45 (0.5%) return non-standard methods, and 266 (3%)
fail to respond. We observe a total of 36 unique non-standard
methods.

We find only three servers that have the same HTTP-response
fingerprint as Stegotorus, suggesting that the false-positive rate of
this active attack is quite low (or 0.03%).

We note that there are a total of 1,447 unique HTTP-response
fingerprints. About 40% of these fingerprints are shared by
more than 2 servers. The most-seen fingerprint is shared by 845
servers (9% of all the servers examined). Looking ahead, one might
therefore update the Stegotorus server to have the same fingerprint
as these servers, which will cause a false-positive rate of close to
10% and, moreover, flag network flows associated with 5 of the top
100 domains and 74 of the top 1 K domains.

4.3 FTE content-length attack
Description. One possible approach for detecting FTE, as dis-
cussed by the authors of [12], is to check the correctness of
the Content-Length fields of an HTTP message (HTTP request
or HTTP response), since the HTTP message generated by the
currently used version of FTE has an invalid Content-Length field
that is mismatched with the real length of the content.

Results. For an HTTP flow, we use the same technique as we used
in the PDF attack to reassemble HTTP sessions. Then, we check
if the message has the Content-Length field in a message, calculate
the length of the message body if it has the field, and compare the
calculated length with the length specified in the Content-Length
field. The false-positive rate is defined as the number of sessions
with incorrect content length over the total number of sessions (in
percentage). The false-positive rates are 1.86%, 1.95% and 3.5%
for OfficeDataset, CloudDataset, and WifiDataset respectively.

Further examining the false positives, we find 34.2% of them
are caused by early terminated connections, and 6.8% are caused
by Transfer-Encoding fields (which trumps any existing Content-
Length fields). More sophisticated checks could remove these false
positives. There are other reasons for such mismatches, including

extra control bytes added in the message body by some versions of
web browsers; non-ASCII characters in the content-body, and bugs
in web applications [15, 25].

4.4 Discussion
The semantics-based attacks we analyzed are relatively costly in

terms of performance, because they require flow reconstruction (in
the first and last case) or active probing (in the second case). The
active probing and FTE attacks have arguably low false-positive
rates, whereas the first PDF analysis has a clearly prohibitively
large one. Based on our analysis of the three semantics-based
attacks, we suggest that semantics-based attacks should account for
the noisy, non-standards-compliant nature of the web.

5. ENTROPY-BASED ATTACKS
Entropy-based analyses have been used for various purposes

such as randomness testing, network anomaly detection, and traffic
classification [29,35,36,55]. As traffic generated by the obfuscators
are encrypted, one expects them to have noticeably higher entropy
than conventional, unencrypted protocols (e.g., HTTP). Prior works
show that entropy tests can be effectively used to detect and cull
encrypted or compressed packets from network streams [47]. Their
goal was to speed up DPI analyses by avoiding such opaque
packets. One might expect that similar techniques could work
here, but we will need to adapt them to our setting of obfuscator
detection.

The obfsproxy methods directly apply encryption to every trans-
mitted message, thereby “randomizing” even the first messages
sent. On the other hand, conventional encryption protocols like
TLS (or HTTPS) use handshake messages that typically contain
unencrypted data from small, fixed sets of strings. Thus, the
entropy of initial messages may provide a reliable way to distin-
guish obfsproxy messages from normal traffic. FTE also employs
encryption from the start, although ciphertexts are designed not to
look randomized. Nonetheless, the initial messages produced by
the FTE obfuscators (as currently deployed in the TBB) are HTTP
GET messages containing URIs that directly surface random-
looking bytes from an underlying encryption scheme. So both
the obfsproxy methods and FTE may admit detection by entropy-
based tests on their initial messages. We explore this conjecture in
a moment. First, let us explain the statistics we will use.

Shannon-entropy estimator. Let X = x1x2 · · ·xL be a string
of L bytes, i.e., each xi ∈ {0, 1, . . . , 255} (where we map between
bytes and integers in the natural way). Let nj be the number of
times that the value j appears in X , and let pj = nj/L. Then
our estimate of the (byte-oriented) Shannon entropy is computed
as H(X) = −

∑255
i=0 pi log2 pi. Notice that the maximum value

of H(X) is 8 = log2 256, and this occurs when pi = 1/256
for all i. That means that the payload string X contains every
symbol in {0, 1, . . . , 255} an equal (positive) number of times.
Furthermore, we note that a string with only printable ASCII
characters will never have an entropy more than 6.6 = log2 95.

The entropy-distribution test. The traditional Kolmogorov-
Smirnov (KS) two-sample test provides a tool for deciding whether
or not two sets of samples were drawn from the same distribution.
We use it to help us detect high-entropy byte sequences. As above,
let X be a string of L bytes. Fix an integer block size k > 0, define
B = bL/kc, and write X = S0 ||S1 || · · · ||SB−1, where each
block Si is length k bytes (or possibly less for SB−1). We will
treat the sequence H(S0), H(S1), . . . , H(SB−1) as B samples
from some unknown distribution Dk over entropy values. The
second distribution we consider is the distribution of entropy values



when the underlying strings are uniformly random. We denote
this distribution by D̃k, and a method for calculating D̃k is given
in [47]. As shown, the distributions under consideration are
parameterized by the block size k, whose value we will address
later.

For our entropy-distribution test, we compute the two-sample
KS-test3 for H(S0), H(S1), . . . , H(SB−1) and an equal-length
sequence of samples from D̃k, and observe the p-value of the
test. If the p-value is smaller than our chosen significance-level of
α = 0.1, then the null hypothesis thatDk = D̃k is rejected, and we
conclude that the bytes are not uniformly distributed. Otherwise,
the test does not provide statistically significant evidence for
rejecting the null hypothesis, and we conclude that the bytes are
uniformly distributed.4 Our choice of α = 0.1 was based on it
being commonly used as a less restrictive (than 0.5) significance
level in hypothesis testing in other settings. Higher α would label
flows as uniform less often, lower α the opposite. Looking ahead,
our experiments show that many choices of α around 0.1 would
achieve the same obfuscator detection accuracy.

5.1 Detecting Obfsproxy
We start by showing how to use the entropy-distribution test to

detect that a network flow corresponds to one of the two obfsproxy
methods. (Our tests currently make no effort to distinguish
between obfsproxy3 and obfsproxy4.) As discussed above, we
will make use of the observation that randomizers like obfsproxy3
and obfsproxy4 encrypt all bytes in the first message of a flow.
Conventional encryption protocols such as TLS and SSH do not:
they have fixed plaintext headers. We therefore apply the entropy-
distribution test to the first 2,048 bytes of the first client-to-server
packet’s application-layer contents. If the length of a first-seen
content is less than 2,048 bytes, we will just test on all the bytes
of the content. If the entropy-distribution test applied to these bytes
indicates that they are uniformly distributed we flag the flow as
obfsproxy.

First, based on the protocol specifications, the minimum payload
length for obfsproxy3 is 193 bytes. For obfsproxy4 it is 149 bytes.
Thus, we will check payload lengths for the first packet and require
that the length be at least 149 bytes to be labeled as obfuscated. We
will couple this check with an entropy-based test.

We experiment with the entropy distribution test described above
for block sizes k ∈ {4, 8, 16, 32, 64}. We also considered two
kinds of alternative tests. First is the byte uniformity test, in
which we use a KS test with null hypothesis that the payload
byte values are uniformly distributed (which is different than the
entropy distribution test described above, where the null hypothesis
is that the distribution of entropy values match closely those that
one would get form a uniform distribution). We also consider
the truncated sequential probability ratio test (SPRT) from [47]
applied to payload byte values. This was used by [47] to detect
“opaque” traffic (encrypted or compressed), and was shown to be
more powerful than the (plain) entropy-test in their setting. Please
see [47] for details of that test. We consider it for block sizes
of 8, 16, and 32 bytes. This gives us a total of nine tests, the
entropy distribution test with the five distinct block sizes, the byte
uniformity test, and the SPRT tests with three different block sizes.
In all cases we apply the payload length checks mentioned already.

3Using scipy.stats.ks_2samp [18].
4Technically, accepting the null hypothesis in this way should only
be performed when a test has sufficient power. As we will see using
the test in this way performs well, and so we dispense with a power
analysis.

To evaluate these tests we proceeded as follows. We use stratified
random sampling (in our case we sample the same number of
traces of each of the type of traffic) to select a 30% fraction of
the traces from HandShakeDataset to construct a validation set and
use the remaining 70% as a test set. Recall that HandShakeDataset
consists of 5,000 handshake messages for each of obsproxy3,
obfsproxy4, SSL/TLS, HTTP, and SSH flows, meaning that we
have both obfuscated and un-obfuscated traces represented. We
discuss false positives on the university data sets below.

We use the validation set to pick the best performing of the nine
tests, and then analyze the test’s performance on the test set. We
repeat this procedure 10 times with fresh random splits of the test
sets. In all 10 iterations the best-performing test on the validation
set is the entropy distribution test with block size k = 8. Table 5
shows the results broken down by protocol types and including
for comparison the performance of some of the other tests on the
test set. The results are strong: the entropy distribution test with
k = 8 had only one false positive and zero false negatives in the
worst case. We note that the payload length checks are critical
here, we showed that SSL/TLS flows had a false-positive rate of
roughly 23% on average when one omits the check. With the length
checks in place, however, the p-values computed during the entropy
distribution test for SSL, HTTP and SSH handshake messages are
always near zero (a definitive rejection of the null hypothesis),
whereas the median p-values for the flows declared to be obfsproxy
is 0.99. Thus we consider the tests decisive.

False positive analysis using campus traces. The above analysis
of false positives was in a closed-world setting with just the
three protocol types (SSH/HTTP/TLS). We take the best test from
above and evaluate false positives against the network traces seen
from the university data sets. Specifically we apply the entropy
distribution test (with k = 8) on the first packet of every TCP flow
in OfficeDataset, CloudDataset, and WifiDataset (assuming the
packet is non-empty). We found 3,998 (0.33%), 19,247 (0.25%),
and 12,786 (0.24%) false positives, respectively.

According to Bro, the 36,031 false-positive flows were dis-
tributed as follows: 18,939 were SSL/TLS, 9,873 were HTTP,
and the remaining 7,219 flows were reported as “unknown”. We
applied nDPI [28], an open source DPI that can detect hundreds
of application protocols, to the unknown flows. It was able to
classify 1,673 (23.1%) of these as follows: 1,275 were Real Time
Messaging Protocol (RTMP), 92 were SMTP, 14 were SSH, and
the remaining were generated by other various applications.

The false-positive SSL/TLS flows account for 1.22% of all
SSL/TLS flows examined, while the false-positive HTTP flows ac-
count for 0.10% of all HTTP flows examined. We find the SSL/TLS
false positives are associated with 1,907 unique destination IPs, and
90% of these false positives are associated with only 685 unique
destinations. Therefore, a large fraction of these false positives
could be caused by specific server-side settings. Upon further
examination of the destinations in the latter mislabeled HTTP
flows, we find just 357 unique servers. The URLs of these servers
contain only printable ASCII characters but have the same entropy
profile as a random string. The false-positive SSH flows all have
encrypted handshakes, which suggests they may use obfuscated
SSH [23]. The handshake message of RTMP consists of a 1-
byte protocol version and a 1536-byte random string, causing our
embellished entropy test to label all RTMP flows as positive.

5.2 Detecting FTE
As currently implemented in the Tor Browser Bundle, the

first message in an FTE flow is an HTTP GET request. The
URIs in these requests also have large Shannon entropies because



FNR FPR
Obfs3 Obfs4 SSL HTTP SSH

Entropy dist. test 0 0 0.02 0 0
Uniform byte test 5.1 5.0 0 0 0

SPRT (8-byte) 60.2 58.3 30.6 0 0
SPRT (16-byte) 24.4 24.8 0.06 0 0
SPRT (32-byte) 6.6 6.9 5.3 0 0

Table 5: A comparison of the average false-positive/false-negative
rates (in percentage) of different tests for obfsproxy handshake
message detection, across ten rounds of randomized validation/test
splits. While the entropy distribution test (only shown for k = 8)
was chosen in all ten rounds, we show the test-set performance of
the other style of tests for comparison. All these tests are performed
with the payload length check.
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Figure 6: CDF of lengths (left) and entropies (right) of all URIs
extracted for three campus network datasets.

their characters are direct encodings of ciphertext bits into bytes.
Estimating the entropies of all URIs produced by FTE in 30%
of traces (randomly sampled) in HandShakeDataset, we find a
relatively narrow range of 5.5 to 5.8 bits. In HandShakeDataset, for
non-FTE HTTP GET messages, the URIs always have entropies of
less than 5.1 bits. This leads to a simple URI-entropy test: if the
URI in the first GET request of a HTTP flow has entropy of at least
5.5 bits, then we label the flow FTE.

Unsurprisingly, this test produces zero false negatives and zero
false positives against HandShakeDataset. We also evaluated
the URI-entropy test against OfficeDataset, CloudDataset, and
WifiDataset. For an HTTP flow that contains GET requests, we
extract the URI from the first of these, and perform the URI-entropy
test on it. We found a total of 420,795 URIs are mislabeled as FTE,
or about 4% of the roughly 10 M URIs examined.

To sharpen our test, we observe that the URIs in the HTTP
requests generated by FTE have a constant length of 239 bytes. So
we embellish our URI-entropy test so that positively labeled flows
must also have a URI length of exactly 239 bytes. This significantly
reduces the false-positive rate: only 55, 167, and 42 non-FTE flows
are mislabeled as FTE in the OfficeDataset, CloudDataset, and
WifiDataset datasets, respectively. That is a total of just 264 false-
positives out of around 10 M samples, giving the embellished test a
very small false-positive rate.

Note that the above tests can in fact be implemented without
message reconstruction, since the tests only involve data in the first
packet at fixed locations.

We note that [8] suggests using FTE URI length alone for
detection. But we find that a length-only test causes about a 15%
false-positive rate over the same 10 M flows. The CDFs of URI
lengths and entropies are given in Figure 6.

5.3 Discussion
Our results show that entropy-based tests, embellished with

simple length heuristics, can accurately detect obfsproxy3/4 and

FTE with relatively low false-positive rates on real network traffic.
White et al. [47] show that slightly simplified versions of our
entropy-based tests can be implemented on commodity hardware,
making them applicable at enterprise scale. The main simplifica-
tion is that their tests make use of a fixed-size string, whereas ours
use up to one full TCP payload. We have not yet considered the
efficacy of our tests using truncated payloads.

We note that our entropy-based tests do not perform well
at detecting meek-generated traffic, because meek tunnels over
HTTPS. To detect meek one will need more sophisticated attacks,
as shown in the next section. Finally, we point out that the entropy-
based tests in this section are far less resource-intensive than the
semantics-based attacks of §4. Those attacks in most cases require
flow reconstruction, and these do not.

6. ML-BASED ATTACKS
Using machine learning (ML) for traffic classification is not a

novel idea [1, 5, 49], but we are unaware of any prior work that has
attempted its use in detecting obfuscated traffic. In this section, we
develop attacks using ML with carefully selected features.

Our classification model will be binary, with output labels
“positive” (obfuscated) and “negative” (not obfuscated). During
training, we will label all training traces that were generated
by a targeted obfuscator with “positive”, and all other traces as
“negative”. Thus we will have a classifier for each obfuscator that
aims to distinguish a given obfuscator from all other traffic. When
attempting to detect the use of any Tor pluggable transports, one
could run all of our tests in parallel (one targeting each obfuscation
method) and if any of them returns “positive” then the meta-
decision would be that Tor with some pluggable transport is in use.

Before describing the actual classifiers, let us discuss the features
that they will use, training considerations, and the details of how we
evaluated their efficacy.

Features. Our ML-based attack will make use of three types of
features. The first are entropy-based features. For a given flow, we
calculate the Shannon entropy of every packet payload, and use the
maximum/minimum/average entropies in packets in each direction
(upstream or downstream) as features. The selection of this feature
is inspired by the results of the entropy-based tests in §5.

The second feature type is timing-based features, which are
based on an observation regarding traffic patterns in meek. Ac-
cording to the documentation, meek clients will send packets to a
meek server periodically, to check if the server has data to send.
This results in timing patterns in the TCP ACK traffic of meek
connections that differ from typical TLS connections [42]. To
capture this as a feature, we calculate the intervals between two
consecutive TCP ACK packets (in the same direction) in a flow,
and group the intervals into 30 bins. Based on our observations
of meek traffic, the intervals are usually very small: 55% of them
are less than 10 ms, and 99.9% are less than one second. So we
limit the maximum considered ACK interval to one second. We
use (x, y] to denote a bin of width y − x, accepting all numbers r
such that x < r ≤ y. (All numbers are milliseconds.) Across
our 30 bins, the widths are as follows: between 0 and 10 the
bin width is 1 (i.e., (0, 1], (1, 2], etc.), between 10 and 100 the
bin width is 10, between 100 and 1000 the bin width is 100, and
the final bin is (1000,∞]. We use variable-width bins to balance
timing granularity and computational efficiency, and because the
interval distribution is skewed towards lower values. Instead of
using absolute numbers, our per-bin feature is the percentage of
inter-ACK intervals that fall into a given bin.



Finally, we consider packet-header features. The first of these is
the percentage of TCP ACK packets sent in each direction. This is
motivated by the behavior of meek just discussed; we expect to see
a larger-than-normal number of TCP ACK packets in meek flows.
The second follows previous works (e.g. [7, 30]) by exploiting
packet length as a distinguishing characteristic. For a given flow,
we use the five most common packet-payload lengths (in each
direction) as a feature.

Windowing strategies. We will have two main goals for our
classifiers. The first is to accurately detect all of the obfuscators
under consideration. The second is to detect obfuscated traffic
as soon as possible within a flow, which helps to minimize the
amount of state required. Based on our results for the entropy-
based tests, we can hope to classify some obfuscated flows based
solely on the first message. For meek, however, this seems unlikely
to work because meek leverages genuine TLS connections. So,
to accommodate both goals, we allow the classifier to train over a
window of flow traffic. Inspired by [6, 20, 27], we consider two
windowing strategies:

(1) The classifier inspects the firstX packets of a flow (including
SYN and ACK packets), and extracts features from these
packets to do classification.

(2) The classifier extracts features from the packets within the
first X seconds of a flow to do classification.

Examining the distributions of durations and sizes (number of
packets in a flow) of all obfuscator traces collected, and considering
that we want the classifier to be able to make a decision as soon
as possible, we limit the range of X in our tests as follows. For
the packet-count strategy, X ∈ {30, 35, 40, . . . , 300}, and for
the time-based strategy X ∈ {2, 3, 4, . . . , 10}. Choosing the
endpoints for the packet-count strategy, we can hope to classify
between 90 and 99 percent of obfuscator flows before they termi-
nate; simulating online classification, as opposed to after-the-fact.
The same reasoning applies to the boundaries for the time-based
strategy.

Details of classifier evaluation. Our initial measure of classifier
performance uses the TorA, TorB, and TorC datasets. Recall that
these include both synthetic Tor traces under each of the pluggable
transports, as well as synthetic traces for SSL/TLS and HTTP.

For any given dataset, we perform nested cross validation with
ten outer folds and ten inner folds. We measure performance
for that dataset by taking an average over ten outer folds. In an
outer fold, we perform a stratified random sampling of the target
dataset to select 70% of the traces to create the test set, and use
the remaining 30% for training and validation of classifiers for the
inner folds.

Each inner fold is as follows: First, we perform a second
stratified random sampling, taking a one-third for training and
leaving the remainder for validation.5 Next, we fix a classification
strategy by choosing: classification algorithm (K-nearest neighbor,
Naive Bayes, or CART), windowing strategy (number of packets
or time for each allowed X), and feature set (any single feature,
any pair of features, or all features). There are 1,344 different
classification strategies, in total. For a given strategy, we train five
classifers, one for each of the obfuscators. Each of these is tested
on the validation set, and we record the average performance of

5There are perhaps more standard choices for the split sizes, but we
do not expect different choices to significantly impact results. The
large test set size will tend to produce conservative estimations of
our classifiers’ performances.

the five classifiers. This gives an average measure for a particular
classification strategy.

We pick the parameter combination that results in the classifiers
that perform best on average across all inner folds. Then, using the
“winning” classification strategy, we finally train a new classifier
using all traces from the training/validation portion. This final
classifier is what is tested on the test set.

As mentioned, we repeat the training and testing for 10 ran-
domized 70-30 outer folds, and we will report the averages over
these folds in a moment. In addition to reporting true-positive and
false-positive percentages, we will report area under the precision-
recall curve (PR-AUC) (c.f., [10]). A higher PR-AUC indicates a
higher true-positive rate and lower false-positive rate. Specifically,
a classifier with PR-AUC equal to one is perfect: it gives only true
positives with no false positives. We calculate PR-AUC using the
scikit-learn tool [9].

Looking ahead, we will sometimes also report on the average
result of testing classifiers not chosen by the training/validation
regime in order to understand the benefit of using, e.g., some
particular feature.

6.1 Results
We will first analyze the performance of ML-based attacks using

the synthetic datasets, and then present the false-positive rates
seen on the campus traces. To summarize, the best classifier
achieves a high average PR-AUC (0.987), a high average true-
positive rate (0.986), and a low average false-positive rate (0.003),
across all five obfuscators as measured on the same synthetic
data set it is trained on. The classifiers all perform significantly
worse when tested on a synthetic dataset for which they were not
trained. Finally, the highest false-positive rate of any classifier as
measured on the campus datasets (none of which were available
during training) is 0.65%.

Classifier parameters. Using TorA, we found that the best-
performing classifiers were essentially always CART decision trees
using the packet-count windowing strategy. The best classifiers
used between 280 and 300 packets, which we consider too large
for practicality. However, classifiers using up to 30 packets already
perform within 0.3% PR-AUC of the best performing, and so we
from now on restrict our attention to them.

Feature performance. We next discuss how the different types of
features effect classifier performance. Recall that we used entropy-
based, packet-timing, and packet-header features. In Figure 7 we
compare classifier true positive and false positive rates when testing
specific combinations of features for the TorA dataset. We can
see that using only entropy-based and/or packet-header features
can already achieve high true positives and low false positives,
with pretty low variance across folds (indicated by the error bars).
Timing-based features showed a higher false-positive rate, and we
conclude that a combination of entropy-based and packet-heading
features performs best. Our training procedure indeed always
selected the combination of the entropy-based and packet-header
features.

Unexpectedly, entropy-based features work well for detecting
meek. Examining the number of packets with non-zero-byte
payload in the first 30 packets of the meek traces and the SSL/TLS
traces in the Tor datasets, we find 70% of SSL/TLS flows have
more than 18 packets with non-zero-byte payload, whereas at least
96% of the meek traces have less than 18 packets with non-zero-
byte payload. So the number of samples for calculating entropy
statistics in a meek trace and a SSL/TLS trace are often different,
which biases the minimum, average, and maximum entropy scores
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Figure 7: A comparison of true-positive (top graph) and false-
positive (bottom graph) rates by features used. “E” indicates
entropy-based feature, “T” the timing-based features, “H” the
packet header feature set, and “EH” indicates a combination of
entropy-based and packet-header features. Note that for clarity the
graphs have truncated y-axes.

used as features. This bias is caught by our classifier to differentiate
between meek and SSL/TLS.

Portability. We now turn to testing the “portability” of this
ML approach. We used the two additional data sets TorB and
TorC, which are collected in environments distinct from that of
TorA. Whereas TorA is collected on an Ubuntu VM connected
to a campus network, TorB is an Ubuntu VM connected to a
home wireless network and TorC is a Windows VM connected
to a home wireless network. We build three distinct classifiers
using each of the three datasets using our procedure as above, but
now augmenting the testing phase to also test against a stratified
random sample of 70% of each of the other two datasets. The
resulting matrix of average true and false positive rates (across all
target obfuscators) is given in Table 8. The diagonal corresponds
to training and testing on the same environment, whereas scores
off the diagonal correspond to training and testing on different
environments.

As can be seen, the ML classifiers do very well when trained and
tested in the same environment. However, using the classifiers to
attempt to classify a network flows generated by a distinct operating
system and/or network significantly hinders performance. When
using the same operating system, but different networks (the
TorA/TorB and TorB/TorA entries) one sees less drastic reduction
in performance. Changing operating systems however has large
impact, with true positive rates being as low as 52% and false-
positive rates reaching 12%. This provides some evidence that
censors will indeed need to train classifiers on example traces
representing all of the target types for which they need to be
deployed.

False positives in campus traces. We finally turn to analyzing
false-positive rates of a classifier trained with the methodology and
data above when faced with real, not synthetic, network traces.
We first combine the TorA, TorB and TorC datasets and use the
combination to train and validate a classifier. We perform stratified
randomized splits of 30% for training and 70% for validation,
train a classifier for each obfuscator, and compute the PR-AUC on

TRAIN\TEST TorA TorB TorC
TorA 0.99 (0.002) 0.88 (0.01) 0.52 (0.02)
TorB 0.93 (0.009) 0.99 (0.002) 0.78 (0.03)
TorC 0.57 (0.12) 0.64 (0.12) 0.99 (0.002)

Table 8: The effect of training and testing in the same or different
environments. Reported is the average true-positive rate (average
false-positive rate in the parentheses) across classifiers for all
obfuscators using the dataset labeling the row for training and the
dataset labeling the column for testing.

PT\Dataset OfficeDataset CloudDataset WifiDataset
obfs3 5,281 (0.43%) 14,714 (0.20%) 34,726 (0.65%)
obfs4 730 (0.06%) 16,257 (0.22%) 24,221 (0.46%)
FTE 6,437 (0.53%) 23,432 (0.31%) 19,857 (0.37%)

meekA 2,065 (0.17%) 787 (0.01%) 1,024 (0.02%)
meekG 837 (0.07%) 3 (0%) 2 (0%)
Total 0.98% 0.70% 1.40%

Table 9: False positives of classifiers on the campus network
datasets. The value in the parentheses is the false-positive rate of
the selected classifier on a given campus network dataset. Recall
that the number of flows tested for OfficeDataset, CloudDataset,
and WifiDataset are 1.22 M, 7.48 M, and 5.32 M respectively.

the validation set. We repeat this procedure 20 times with fresh
random splits, and select the classifiers with the highest PR-AUC.
The PR-AUC of all the classifiers are greater than 0.90 (ranging
from 0.91 - 0.99). The true-positive rates (false-positive rates) of
the best/selected classifiers are 97.2% (0.13%), 97.0% (0.19%),
97.3% (0.08%), 98.3% (0.08%), and 97.8% (0.06%) for obf-
sproxy3, obfsproxy4, meek-amazon, meek-google, and FTE re-
spectively.

Next, for each TCP flow in the campus datasets, we extract the
features using the first 30 packets, label it as negative, and then test
it with each obfuscator classifier. A summary of the results are in
Table 9. The total false-positive rate of the classifiers across all
three datasets is 0.98%. As broken down by dataset, we see as low
as 0.70% (CloudDataset) and as high as 1.40% (WifiDataset).6

The classifier for obfsproxy3 produces the most false positives,
followed by the classifier for FTE. The classifier for meek-google
produces a relatively small number of false positives, which is a
total of 842 false positives out of 14 M flows. That the wireless
network exhibits the largest number of false positives may be due
to their noisier nature [33,34]. For instance, when there are multiple
TCP retransmissions in a flow, most of the packets we examined in
the first 30 packets could be identical, hindering classification.

The false positives are associate with 12,551 distinct hosts, a
small fraction of all monitored hosts, in the monitored networks.
Meanwhile, they are only associated with 6,239 distinct destination
IPs outside the campus networks. Less than 30% of these hosts
or destination IPs are associated with more than 90% of the false
positives. We find that a single IP outside the campus networks
can contribute to as high as 4.6% of the false positives (as high as
1.2% for a single source IP inside the networks). This suggests that
specific server-side or client-side settings could be the reasons for
false positives.

We also determined the protocols of the false-positive flows.
As shown in Table 10, most of the false positives are HTTP,
SSL/TLS or unknown flows, according to Bro. The false positives

6Note that the total rates are not equal to the sum of the individual
obfuscator false-positive rates, as some traces are falsely labeled by
multiple classifiers.



Protocol\PT obfs3 obfs4 FTE meekA meekG
HTTP 12,295 (0.12%) 10,383 (0.10%) 43,673 (0.42%) 1,414 (0.01%) 0

SSL/TLS 29,705 (1.91%) 22,768 (1.47%) 3,773 (0.24%) 1,684 (0.11%) 391 (0.03%)
SSH 0 0 33 (1.94%) 0 0

SMTP 114 (0.55%) 13 (0.06%) 73 (0.35%) 0 0
Unknown 2,739 (0.12%) 6,345 (0.27%) 2,148 (0.09%) 609 (0.03%) 451 (0.02%)

Total 44,853 39,509 49,700 3,707 842
Table 10: Breakdown of the numbers of flows from our campus traces incorrectly labeled by our ML classifiers as the indicated obfuscator.
The values in the parentheses are the percentage of flows labeled by Bro as the indicated protocol that represent false positives (e.g., 0.12%
of HTTP flows are mislabeled as obfsproxy3 by our classifier). “Unknown” means Bro fails to identify the protocol of the flow. The total
number of false positives across all protocols is shown in the final row.

of the meek-amazon classifier have a diversity in their protocols.
We examine some of the mislabeled flows, and realize they may
use a patched version of protocols such as SSH with encrypted
handshakes [23].

We use nDPI to examine the flows labeled as unknown by Bro.
nDPI fails to identify 13.5% of the unknown flows, and reports 45
protocols found in the remainder. Of these, 21 are built atop HTTP
or SSL/TLS. These protocols account for 78.2% of the unknown
flows. Whether an ML approach can be enhanced to reduce false
positives even further remains an open question.

6.2 Discussion
Our results show that trained classifiers using traffic-analysis-

type techniques are effective at detecting obfuscators. This holds
true even for the meek family of obfuscators, which are widely
considered the hardest to detect by DPI. The true-positive rates are
high, and the false-positive rates are relatively small. We discuss
the impact of the latter in more detail in the next section.

Though the training process of the ML-based approaches are
complex, the decision trees emitted by training are, themselves,
actually quite simple: evaluating the trees requires between 6 and
13 integer comparisons. These comparisons use per-flow state
including just a small number of integer counters, for up to the
first 30 packets. We therefore believe the trees themselves will be
relatively easy to deploy, while the trickier issue will be the lack
of portability we observed. This specifically implies that building
good decision trees requires careful training in, ideally, the local
network environment to which they will be deployed.

7. ESTIMATING THE IMPACT OF FALSE
POSITIVES

As we have emphasized, a critical component of successful
obfuscator detection is achieving low false-positive rates and our
work is the first that assesses them. Here we discuss the impact
of false positives and whether the rates achieved by our detection
approaches are sufficient for a censor’s purpose.

Let us fix a particular representative scenario from our data, other
scenarios can be analyzed similarly. Say a nation-state censor
deploys the combined ML-based classifiers for each of the five
obfuscators in the office environment, and assume a true-positive
rate of 99% (as measured with TorA) and the false-positive rate of
about 1% (as measured using the OfficeDataset dataset). For the
foreseeable future, the base rate of obfuscator traffic will continue
to be a tiny fraction of the overall traffic. Suppose, pessimistically
for our analyses, that one out of every one billion flows is actually
obfuscated traffic. Because of the low base rate, only about 1 in
10,000,000 flows marked as obfuscated will, in fact, be obfuscated.
(Not 1 in 100 of marked flows, as one falling victim to the base
rate fallacy might assume.) This is likely to result degradation of
Internet performance, as perceived by “legitimate” users.

Aggressive censors may be willing to cause such degradation.
Of the blocked connections in this scenario, about 34.9% will be
encrypted connections (TLS, SSH), and some censors have already
demonstrated a willingness to block these. Iran, for example, has
been known to block all TLS connections, or at least degrade their
performance [4]. (Degrading bandwidth of such flows will tend
to force Tor to fail, but not non-Tor TLS.) Other countries have
mandated that ISPs prevent or limit use of encrypted protocols [14,
32]. Even so, the majority of flows erroneously labeled by our
techniques as obfuscated are plain, unencrypted HTTP. It seems
reasonable that blocking these will be less palatable for censors
with sensitivity to collateral damage.

Some sophisticated censors have moved to a two-stage detection
pipeline to improve accuracy. China’s so-called Great Firewall first
uses DPI to flag flows as potentially resulting from a censorship
circumvention tool. Measurements suggest that they flag any TLS
connection that has the same list of allowed ciphers as a Tor client
as a possible Tor connection [50, 51]. The destination IP address
of all such flows is then submitted to a distributed system that
asynchronously performs an active probe of the remote IP address
using a Tor client. If the remote IP completes a Tor handshake,
then the IP is is added to a blacklist. See [50, 51] for a detailed
discussion of this behavior.

When using our obfuscator detection approaches in such a two-
stage pipeline, the false-positive rate of the deployed approach
will dictate the load on the more expensive, but more accurate,
second-stage. (Perfectly accurate, active attack on Tor that was just
described.) We refer to this second-stage as the DPI’s slow path,
and now turn to analyzing the slow-path load that would result from
using our tests using the collected traces for simulation.

Table 11 shows a summary of the load seen by the DPI in terms
of active flows per second as broken down by the various traces.
For our purposes, a flow is active from the time stamp of its first
packet to the time stamp of its last packet. We also report statistics
regarding the load on the slow-path. A flow is labeled as going to
the slow path whenever the combined ML-based classifier labels
the traffic as obfuscated (i.e., any of the individual classifiers gives
a positive label to the flow). As is shown, the maximum number
of new slow-path flows per second is modest –in the worst case
54 are active in any given second– and the average is less than
one. This suggests that, with minimal investment in the slow-
path infrastructure, a censor could easily keep up with the false-
positive rate of our obfuscation detectors. Of course, nation-state
censors deal networks even larger than those considered in our
work. Hence, caution should be exercised when extrapolating
results from our setting to others.

8. CONCLUSION
We set out to answer the question of whether censors can use DPI

to detect use of in-use network protocol obfuscators. Unfortunately,



OfficeDataset CloudDataset WifiDataset
Avg. DPI load 14.6 138.5 182.2
Max. DPI load 362 1,042 1,580
Avg. slow-path load 0.08 0.60 0.77
Max. slow-path load 29 24 54
Slow-path active time 4.7% 38.2% 39.1%

Table 11: Summary statistics for DPI load (number of flows per
second) and the slow-path load—the number of flows per second
flagged as any obfuscator by our best-performing ML classifiers.

our analyses suggest that the answer is ‘yes’. We present the first
comprehensive analysis of detectability of in-use network protocol
obfuscators, as they are deployed in Tor. Our analyses reveal fast
entropy-based tests for randomizer protocols and FTE (which is
mostly randomized), and slightly less efficient, but still practical,
machine learning-based attacks that reliably detect meek, a state-
of-the-art tunneling obfuscator. We also show that some semantics-
based detection tests suggested in the literature are less effective
than a censor might like, due to the inherent long tail of non-
standard network traffic. This suggests that future development
of semantics-based tests should necessarily perform false positive
analyses. Towards helping future researchers with such tasks, we
will make our analysis platform open source for other researchers.

It is important to note that the detection techniques we explore
can be, in turn, easily circumvented in almost all cases with
simple updates to the obfuscator. This suggests that with the
current state-of-the-knowledge on building practical obfuscators,
anti-censorship tools will only have the advantage when censors
remain ignorant of (or choose to ignore knowledge of) the details
of their design. Building more robust, future-proof obfuscators
that cannot be blocked by future, efficient DPI algorithms with
knowledge of the obfuscator design remains an open question.
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